//jay Shree Krishna
//har har mahadev
//a%c=b%c
//(b-a)%c=0
//b-a is multiple of c
// The required number of swaps of adjacent elements to sort a permutation is exactly the number of inversions in it
#pragma GCC optimize("O3,unroll-loops","Ofast")
#pragma GCC target("avx2,bmi,bmi2,lzcnt,popcnt")
#include<bits/stdc++.h>
using namespace std;
#define ll long long int
#define p pair
#define pll pair<ll,ll>
#define pii pair<int,int>
#define vpll vector<pair<ll,ll>>
#define ull unsigned long long int
#define vll vector<ll>
#define vii vector<int>
#define vcc vector<char>
#define vdd vector<double>
#define vvll vector<vector<ll>>
#define vvii vector<vector<int>>
#define vvcc vector<vector<char>>
#define vvdd vector<vector<double>>
#define rep(i,a,b) for(i=a;i<=b;i++)
#define repr(i,a,b) for(i=a;i>=b;i--)
#define all(v) v.begin() , v.end()
#define rall(v) v.rbegin(),v.rend()
#define ff first
#define ss second
#define pb push_back
#define rev_sort(v) sort(all(v),greater<ll>())
typedef unsigned long long int ulli;
template<typename T> istream& operator>>(istream& in, vector<T>& a) {for (auto &x : a) in >> x; return in;};
template<typename T> ostream& operator<<(ostream& out, vector<T>& a) {for (auto &x : a) out << x << ' '; return out;};
template<typename T1, typename T2> ostream& operator<<(ostream& out, const p<T1, T2>& x) {return out << x.ff << ' ' << x.ss;}
template<typename T1, typename T2> istream& operator>>(istream& in, p<T1, T2>& x) {return in >> x.ff >> x.ss;}
long long int mod = 1e9 + 7;
ll powermod(ll a, ll b, ll m)
{
if (b == 0) return 1;
ull k = powermod(a, b / 2, m);
k = k * k;
k %= m;
if (b & 1) k = (k * a) % m;
return k;
}
ll inverse(ll b, ll mod) {
return powermod(b, mod - 2, mod);
}
// nCr with modulus
// ll factorial(ll n, ll r){
// if(r==0||r==n) return 1;
// // dp[n][r]=
// return (factorial (n-1,r,dp)%mod + factorial (n-1,r-1,dp)%mod)%mod;
// }
ll sqrtf (ll x) {
ll ans = 0;
for (ll k = 1LL << 30; k != 0; k /= 2) {
if ((ans + k) * (ans + k) <= x) {
ans += k;
}
}
return ans;
}
// ll kadane( vll arr, ll n) {
// ll max_end = 0;
// ll mx = LLONG_MIN;
// for (ll i = 0; i < n; i++) {
// max_end += arr[i];
// if (mx < max_end) {
// mx = max_end;
// }
// if (max_end < 0) {
// max_end = 0;
// }
// }
// return mx;
// }
void bits(ll n, vll&v) {
ll k = 0;
while (n > 0) {
v[k++] = n % 2;
n /= 2;
}
}
// Prime test for large numbers
bool isPrime(ull n, int iter = 10)
{
if (n < 4) return n == 2 || n == 3;
if (n % 2 == 0 || n % 3 == 0) return false;
for (int i = 0; i < iter; i++)
{
ull a = 2 + rand() % (n - 3);
if (powermod(a, n - 1, n) != 1) return false;
}
return true;
}
bool isval(int i, int j, int n, int m) {
if (i < 0 || j < 0 || i >= n || j >= m) return false;
return true;
}
ll SOP(ll n, ll k, vll &v) {
ll dp[k + 1][n + 1];
ll sum = 1, prev_sum = 1;
memset(dp, 0, sizeof(dp));
for (ll i = 1; i <= k; i++) {
prev_sum = sum;
sum = 0;
for (int j = 1; j <= (n - i + 1); j++) {
dp[i][j] = (v[j - 1] * (prev_sum - dp[i - 1][j])) % mod;
if (dp[i][j] < 0 ) dp[i][j] += mod;
prev_sum -= (dp[i - 1][j]) % mod;
if (prev_sum < 0) prev_sum += mod;
sum += (dp[i][j]) % mod;
if (sum < 0) sum += mod;
}
}
return sum;
}
// const ll N = 3e5;
// vll prime(N + 1, -1);
// void sieve(ll n)
// {
// // for (ll i = 0; i <= n; i++) prime[i] = -1;
// ll m = sqrt(n);
// vll ans;
// for (ll p = 2; p <= m; p++)
// {
// //
// if (prime[p] == -1)
// {
// for (ll i = p * 2 ; i <= n; i += p)
// if (prime[i] == -1) prime[i] = p;
// }
// }
// return ;
// }
ll findLowerBound(vector<pair<ll, ll> >& arr,
pair<ll, ll>& p1)
{
// Given iterator points to the
// lower_bound() of given pair
auto low = upper_bound(arr.begin(), arr.end(), p1);
return low - arr.begin();
}
// ll maxvec(vll &v) {
// ll mx = LLONG_MIN;
// ll i;
// rep(i, 0, v.size() - 1) mx = max(v[i], mx);
// return mx;
// }
// ll minvec(vll &v) {
// ll mn = LLONG_MAX;
// ll i;
// rep(i, 0, v.size() - 1) mn = min(v[i], mn);
// return mn;
// }
ll sumvec(vll &v) {
ll sum = 0;
ll i;
rep(i, 0, v.size() - 1) sum += v[i];
return sum;
}
ll func(ll i, ll j) {
if (i % j == 0) return i / j;
return (i / j) + 1;
}
// double dp[1 << 20];
double helper(ll num, ll n, ll j, vvdd prob) {
ll curr = __builtin_popcount(num);
ll den = (curr * (curr - 1)) / 2;
double ans = 0;
for (ll k = 0; k < n; k++) {
if ((num & (1 << k)) && k != j) {
ans += prob[k][j];
}
}
ans = ans / (1.0 * den);
return ans;
}
ll tot = 0;
typedef pair<ll, ll> pi;
// vector <ll> dijkstra(ll V, vector<vector<pair<ll, ll>>> adj, ll s, vll &par)
// {
// priority_queue<pi, vector<pi>, greater<pi> > pq;
// pq.push({0, s});
// vector<ll>dist(V, LLONG_MAX);
// // vll par(V,-1);
// dist[s] = 0;
// while (!pq.empty()) {
// ll dis = pq.top().first;
// ll ind = pq.top().second;
// pq.pop();
// for (auto it : adj[ind]) {
// if (dist[it.ff] > dis + it.ss) {
// par[it.ff] = ind ;
// dist[it.ff] = dis + it.ss;
// pq.push({dist[it.ff], it.ff});
// }
// }
// }
// return dist;
// }
// void build (ll ind, ll l, ll r, vll &v, vll &seg) {
// if (l == r) { seg[ind] = (v[l]); return;}
// ll mid = (l + r) / 2;
// build(2 * ind + 1, l, mid, v, seg);
// build(2 * ind + 2, mid + 1, r, v, seg);
// ll lft = seg[2 * ind + 1], rgt = seg[2 * ind + 2];
// seg[ind] = min(lft, rgt);
// return ;
// }
// void update(ll ind, ll low, ll high, ll l, ll r, ll val, vll &seg) {
// //update previous remaining updates
// if (high < l || r < low) return;
// if (low >= l && high <= r) {
// seg[ind] += val;
// return ;
// }
// ll mid = (low + high) / 2;
// update(2 * ind + 1, low, mid, l, r, val, seg);
// update(2 * ind + 2, mid + 1, high, l, r, val, seg);
// seg[ind] = (seg[2 * ind + 1] + seg[2 * ind + 2]);
// }
// ll query(ll ind, ll low, ll high, ll l, ll r, vll &seg) {
// // if (lazy[ind] != 0) {
// // seg[ind] += lazy[ind];
// // if (low != high) {
// // lazy[2 * ind + 1] += lazy[ind];
// // lazy[2 * ind + 2] += lazy[ind];
// // }
// // lazy[ind] = 0;
// // }
// if ((r < low) || (l > high)) {
// return INT_MAX;
// }
// if (low >= l && high <= r) {
// return seg[ind];
// }
// ll mid = (low + high) / 2;
// // ll ans = (1LL << 31) - 1;
// ll lft = query(2 * ind + 1, low, mid, l, r, seg);
// ll rgt = query(2 * ind + 2, mid + 1, high, l, r, seg);
// return min(lft, rgt);
// }
// ll query(ll x) {
// cout << x << endl;
// cout.flush();
// ll y;
// cin >> y;
// if (y == 0 || y == -2) {
// exit(0);
// }
// return y;
// }
// const ll N = 2 * 1e5 + 10;
// vll fac(N, 1), inv(N, 1);
// void dfs(ll i, vvll&adj, vll &vis) {
// // dp[i] = w[i];
// vis[i] = 1;
// // ans = max(ans, dp[i]);
// for (auto it : adj[i]) {
// if (vis[it]) continue;
// dfs(it, adj, vis);
// }
// }
bool vowel (char x) {
if (x == 'a' || x == 'e' || x == 'i' || x == 'o' || x == 'u') return true;
return false;
}
// const ll N = 2e5 + 10;
// ll fac[N + 1], inv[N + 1];
// ll ncr(ll n, ll r) {
// if (n < r) return 0;
// ll ans = (((fac[n] * inv[n - r]) % mod) * inv[r]) % mod;
// return ans;
// }
void build (ll ind, ll l, ll r, vll &v, vll &seg) {
if (l == r) { seg[ind] = v[l]; return;}
ll mid = (l + r) / 2;
build(2 * ind + 1, l, mid, v, seg);
build(2 * ind + 2, mid + 1, r, v, seg);
seg[ind] = max(seg[2 * ind + 1], seg[2 * ind + 2]);
return ;
}
// ll query(ll ind, ll low, ll high, ll l, ll r, vll &seg) {
// if (r < low || l > high) {
// return LLONG_MIN / 2;
// }
// if (low >= l && high <= r) {
// return seg[ind];
// }
// ll mid = (low + high) / 2;
// ll lft = query(2 * ind + 1, low, mid, l, r, seg);
// ll rgt = query(2 * ind + 2, mid + 1, high, l, r, seg);
// return max(lft, rgt);
// }
// void update(ll ind, ll low, ll high, ll l, ll r, ll val, vll &seg) {
// //update previous remaining updates
// if (high < l || r < low) return;
// if (low >= l && high <= r) {
// seg[ind] += val;
// return ;
// }
// ll mid = (low + high) / 2;
// update(2 * ind + 1, low, mid, l, r, val, seg);
// update(2 * ind + 2, mid + 1, high, l, r, val, seg);
// seg[ind] = (seg[2 * ind + 1] + seg[2 * ind + 2]);
// }
vll help(ll l, ll r, vll curr, vll &v) {
for (ll i = r; i >= l; i--) curr.pb(v[i]);
for (ll i = 0; i < l; i++) curr.pb(v[i]);
return curr;
}
bool helper(ll x) {
ll y = llround(sqrt(x));
return y * y == x;
}
int help(vii &v, ll x) {
int cnt = 0;
for (auto it : v) {
if (helper(it + x)) {
cnt++;
}
}
return cnt;
}
ll query(vll &v) {
cout << "? ";
for (auto it : v) cout << it << " ";
cout << endl;
cout.flush();
ll x;
cin >> x;
return x;
}
bool isval(ll i, ll j, ll n, ll m) {
if ((i < 0) || (j < 0) || (i >= n) || ( j >= m)) return false;
return true;
}
bool comp(vll &a, vll &b) {
if (a[1] > b[1]) return true;
return false;
}
bool comp2(vll &a, vll &b) {
if (a[1] < b[1]) return true;
return false;
}
void yahapekrege() {
ll n;
cin >> n;
vvll fir, sec;
ll i = 0;
while (n--) {
ll a, b;
cin >> a >> b;
if (a > b) sec.pb({a, b, i});
else fir.pb({a, b, i});
i++;
}
sort(all(fir), comp);
sort(all(sec), comp2);
ll o = 1, s = 1;
i = 1;
ll lst = 0;
vll ao, as;
if (fir.size()) ao.pb(fir[0][2] + 1);
if (sec.size()) as.pb(sec[0][2] + 1);
while (i < fir.size()) {
if (fir[i][0] < fir[lst][1]) ao.pb(fir[i][2] + 1), lst = i, o++;
i++;
}
i = 1;
lst = 0;
while (i < sec.size()) {
if (sec[i][0] > sec[lst][1]) as.pb(sec[i][2] + 1), lst = i, s++;
i++;
}
cout << max(o, s) << endl;
if (ao.size() >= as.size()) {
cout << ao;
}
else cout << as;
}
int32_t main() {
ios_base::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
// freopen("input.txt", "r", stdin);
// freopen("output.txt", "w", stdout);
// fac[0] = 1, fac[1] = 1;
// for (ll i = 2; i <= N; i++) {
// fac[i] = (fac[i - 1] * i) % mod;
// }
// inv[N] = inverse(N, mod);
// for (ll i = N - 1; i >= 0; i--) {
// inv[i] = inverse(i, mod);
// }
// sieve(N);
// int t;
// cin >> t;
// //
// while (t--) {
// // cout<<"Case #"<<a<<": ";
yahapekrege();
// // a++;
cout << endl;
// }
return 0;
}
1399A - Remove Smallest | 208A - Dubstep |
1581A - CQXYM Count Permutations | 337A - Puzzles |
495A - Digital Counter | 796A - Buying A House |
67A - Partial Teacher | 116A - Tram |
1472B - Fair Division | 1281C - Cut and Paste |
141A - Amusing Joke | 112A - Petya and Strings |
677A - Vanya and Fence | 1621A - Stable Arrangement of Rooks |
472A - Design Tutorial Learn from Math | 1368A - C+= |
450A - Jzzhu and Children | 546A - Soldier and Bananas |
32B - Borze | 1651B - Prove Him Wrong |
381A - Sereja and Dima | 41A - Translation |
1559A - Mocha and Math | 832A - Sasha and Sticks |
292B - Network Topology | 1339A - Filling Diamonds |
910A - The Way to Home | 617A - Elephant |
48A - Rock-paper-scissors | 294A - Shaass and Oskols |